
1 The one-dimensional case

The Laplace approximation is a versatile tool that can be used to approxi-
mate integrals of the form ∫ b

a

exp[−Mf(x)]dx (1)

The basic assumption is that the largest contribution value to the integral is
in an interval around the critical points of f(x). Under the laplace approxi-
mation, it is a ssumed that the value of f(x) ’far away’ from the critical point
is so low, that it effectively does not contribute to the total integral. The
integration limits will thus be replaced as shown below.

Approximate f(x) by the Taylor series

f(x) ≈ f(x0) + (x− x0)f
′(x0) +

1

2
(x− x0)

2f ′′(x0) + O (2)

The Tailor series for f(x) around the critical point, is then

f(x) ≈ f(x0) +
1

2
(x− x0)

2f ′′(x0) + O (3)

And the integral can be approximated by∫ b

a

exp[−Mf(x)]dx ≈ exp[−Mf(x0)]

∫ ∞

−∞
exp

[
− (x− x0)

2

2(Mf ′′(x0))−1

]
(4)

The integration on the LHS can be recognised as a standard Gaussian inte-
gral. ∫ ∞

−∞
exp

[
− (x− x0)

2

2(Mf ′′(x0))−1

]
=

√
2π

Mf ′′(x0)
(5)

leaving one with the final result∫ b

a

exp[−Mf(x)]dx ≈ exp[−Mf(x0)]

√
2π

Mf ′′(x0)
(6)
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2 The 2 dimensinal case

We seek to approximate

Q =

∫ bx

ax

∫ by

ay

exp[−Mf(x, y)]dxdy (7)

say

f(x, y) ≈ f(x0, y0) +

fx(x0, y0)(x− x0) +

fy(x0, y0)(y − y0) +

1

2
(fxy(x0, y0) + fyx(x0, y0))(x− x0)(y − y0) +

1

2
fxx(x0, y0)(x− x0)

2 +

1

2
fyy(x0, y0)(y − y0)

2 + O (8)

If the first derivatives are equal to zero, the quadratic form is easily recog-
nisable: (

x− x0

y − y0

)T (
fxx fxy

fyx fyy

) (
x− x0

y − y0

)
(9)

And thus

Q ≈ exp [−Mf(x0, y0)]
2π

M(fxxfyy − fxyfyx)
(10)

3 Practical considerations

The better f(x, y) is approximated by a quadratic function, and the large
M is, the better the approximation is. Having an analytical solution to
the location of x0 and y0 is desirable, as this will facilitate a quick way of
obtaining the final expressions.
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4 Example: Introduction of experimental er-

rors in the refinement likelihood function

The pdf under study is

P (It; Ic) =
1

εβ
exp

[
−It + α2Ic

εβ

]
I0

[(
4α2ItIo

ε2β2

)1/2
]

(11)

Now say that It is actually a random variable, for which we have a prior
distribution. We get

P (Io; Ic) =

∫ ∞

−∞
P (It; Ic)P (Io; It)dIt (12)

Although an analytical solution is available (see Pannu & Read paper), it is
instructive to do this via the Laplace approximation. First of all, note that
a Bessel function can be approximated by the series:

I0(x) =
∞∑

n=0

(z/2)2k

(n!)2
(13)

Write

P (Io|Ic) =

∫ ∞

0

1

εβ
exp

[
−It + α2Ic

εβ

]
exp

[
(Io − It)

2

2σ2

]  ∞∑
n=0

(
α2IcIt

ε2β2

)n

(n!)2

 dIt

(14)

We interchange the summation and integration sign, without giving (or ac-
tually having) proof that the stipulated seriers is uniformly convergent on
the specified integration domain. Thios results in a sum of integrals, which
can be evaluated one at the time.

P (Io|Ic) =
∞∑

n=0

Pn (15)

Pn =

∫ ∞

0

1

εβ
exp

[
−It + α2Ic

εβ

]
exp

[
− (Io − It)

2

2σ2

] (
α2IcIt

ε2β2

)n

4(n!)2
dIt

(16)
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The above integral suits itself for a laplace approximation, as seen below.
write

f(It) = log[ε] + log[β] + log[(n!)2]

It + α2Ic

εβ
+

(Io − It)
2

2σ2
+

−n log

[
α2IcIt

ε2β2

]
(17)

The first and second derivatives are equal to

f ′(It) =
1

βε
− n

It

− Io − It

σ2
(18)

f ′′(It) =
n

I2
t

+
1

σ2
(19)

The roots of the first derivative are given by

ˆIt(±) = −
1
εβ
− Io

σ2

2/σ2
±

√(
1
εβ
− Io

σ2

)2

+ 4n
σ2

2/σ2
(20)

As we are only interested in the maximum of f(It), only one of the solutions
is of our interest. The solution will be that for which

f ′(Ît − δ) < f ′(Ît + δ) (21)

In order to indentify the proper solution, we write

g(x̂+ + δ)(x̂+ + δ) = a(x̂+ + δ)2 + b(x̂+ + δ) + c (22)

g(x̂+) = 0 (23)

x̂+ =
−b +

√
b2 − 4ac

2a
(24)

we also have

g(x̂− + δ)(x̂− + δ) = a(x̂− + δ)2 + b(x̂− + δ) + c (25)

g(x̂−) = 0 (26)

x̂− =
−b−

√
b2 − 4ac

2a
(27)
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For our case, we have a > 0 and the determinant (the square root) exists.
We also know that |b| ≤

√
b2 − 4ac holds. It is then easy to show that x− < 0

and x+ > 0.
This implicates that

g(x̂− + δ)(x̂− + δ) < 0 (28)

g(x̂+ + δ)(x̂+ + δ) > 0 (29)

g(x̂− + δ) > 0 (30)

g(x̂+ + δ) < 0 (31)

(32)

As the sign of a derivative around a maximum should change from positive
to negative, the solution sought after in the laplace approximation is allways

Ît = −
1
εβ
− Io

σ2

2/σ2
+

√(
1
εβ
− Io

σ2

)2

+ 4n
σ2

2/σ2
(33)

It is good to notice that Ît does nopt depend on Ic, which is nice.
The approximate value of the integral is thus equal to

Pn ≈ 1

εβ
exp

[
− Ît + α2Ic

εβ

]
exp

−
(
Io − Ît

)2

2σ2

×
(

α2IcÎt

ε2β2

)n

(n!)2

√
2π

n

Ît
2 + 1

σ2

(34)
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Note that the distribution is not normalized after the application of the
laplace approximation. In order to normalise the distribution, integrate the
distribution:

κ =

∫ ∞

0

Ptot(Ic)dIc (35)

This integration can be done numerically.
For refinement however, the following functions need to be computed:

Q = − log

[
κ

∞∑
n=0

Pn

]
(36)

∂Q

∂Ic

=
κ

∑∞
n=0

∂Pn

∂It

κ
∑∞

n=0 Pn

(37)

∂Pn

∂Ic

=

(
n

Ic

− α2

εβ

)
Pn (38)

The effect of the errors on the distribution can be seen in the following fig-

ure:
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